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We consider a quantum system with a Hamiltonian expressed as a sum of two terms. The first is chaotic, and
considered a member of a Gaussian orthogonal ensd€i@hl&) of random matrices. The second is integrable,
having either equally spaced levels or levels with spacings satisfying a Poisson distribution. The resulting
nearest-neighbor-spacin®INS) distribution of the energy levels of the system is nearly Poissonian in both
cases when the analysis involves a large number of levels. If a limited number of levels is considered in each
case, deviations from the Poisson distribution are observed. When the regular part of the Hamiltonian is an
oscillator with a limited number of phonons, the resulting NNS distribution can be considered as a superpo-
sition of independent sequences of levels with GOE statistics when the oscillator energy quantum is larger than
the mean spacing of the other term of the Hamiltonian. This distribution has a shape intermediate between the
Wigner and the Poisson, and gradually approaches the latter when the number of phonons is increased. This
transitional behavior is well reproduced by averaging the level-repulsion function, which may be considered as
a justification for a method, recently suggested to calculate the NNS distributions for systems with mixed
classical dynamicq.S1063-651X96)12409-0

PACS numbeg(s): 05.45+b

I. INTRODUCTION posed to analyze the NNS distribution of levels of mixed
systemg3—12]. They depend on one parameter more,
Random matrix theories have been successfully used tehich can be tuned to interpolate between the Wigner and
describe a wide variety of chaotic systefdg. For a bound Poisson distributions. These formulas give different descrip-
guantal system with time-reversal symmeffgr, equiva- tions for the level statistics of mixed system, each providing
lently, antiunitary symmetiy energy levels are determined a suitable description of at least one numerical experiment
by diagonalizing a Hamiltonian matrix which is real and with a model Hamiltonian. The conclusion that follows from
symmetric. When the classical counterpart of such a systertese studies is that, while the level statistics of chaotic and
is chaotic, the Hamiltonian matrix can be regarded as a typiregular bound quantal systenisith the exception of har-
cal member of the Gaussian orthogonal ensenBIBE) of  monic oscillatory have universal behavior, mixed systems
random real symmetric matrices for which all the matrix el-unfortunately do not follow the same rules. Nothing is
ements(diagonal and off-diagonphave the same Gaussian strange about this. Studies of various classical mixed systems
distribution. The exact expression for the nearest-neighbohave shown that the transition from regularity to chaos oc-
spacing (NNS) distribution of levels of the GOE is quite curs in one of several routes, e.g., a sequence of bifurcations,
cumbersome. This distribution can, however, be closely apperiod doubling, or intermittent transitiofi$3].
proximated by a simple function, known as the Wigner dis- In this paper we consider a special class of mixed sys-
tribution, tems, in which the degrees of freedom can be divided into
two noninteracting groups, one having chaotic dynamics and
Pwigne( S) = (ms/2)exp( — ws?l4). (D) one regular. The Hamiltonian of such a system is given as a
sum of two terms, so that each of the eigenvalues of the total
When the classical counterpart of the system is regular, thelamiltonian is expressed as a superposition of two eigenval-
NNS distribution is, in general, well represented by a Poisues corresponding to the two Hamiltonian terms. Hamilto-
son distribution: nians of this form have been successfully used in several
models of molecular, nuclear, and solid-state physics. In Sec.
PpoissoftS) = exp(—S). (2 Il, we generate an energy spectrum corresponding to each of
the two terms by treating the level spacing as random num-
Among the exceptional cases is the multidimensional harbers having Wigner or Poisson probability densities. We also
monic oscillator of incommensurate frequencies, where theonsider the case when the regular part of the Hamiltonian is
NNS distribution is sharply peaked at a finite spacing whosenodeled as a harmonic oscillator. We calculate the spacing
value depends on the frequency rati@$ The intermediate distributions of the levels of the total Hamiltonian for differ-
regime between regularity and chaos is still the subject oént values of the ratio of level densities of the partial Hamil-
many recent investigations. Various formulas have been praenians. The resulting NNS distributions are nearly of a Pois-
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sonian shape as far as a large number of levels belonging to 10 . , .

each Hamiltonian term are involved. Section Ill considers 0 /p =30

the case when the harmonic oscillator is allowed to have a Pow

limited number of eigenvalues, and we find that the NNS 0.5f .

distribution is approximately well described as that of a mix-
ture of GOE spectra. Section IV applies the recently sug-
gested representation of the level-repulsion function for a
mixed system as an average of the corresponding functions
for the Poisson and Wigner distributioh$2] to derive the
NNS of a superposition of GOE spectra, and compares the
resulting expression with the distributions obtained in Sec.
lll. The results of the present paper are summarized in Sec.
V.

II. NNS DISTRIBUTION OF LEVELS
OF THE MIXED SYSTEM

We consider a system of many degrees of freedom, some
of them chaotic and some regular. The Hamiltonian of the
system can be decomposed into two terms,

ok] E
H = H chaotict H regular (©))

each corresponding to one of the two groups of degrees of 0.0 L
freedom. In the general case, the Hamiltonian has a third

term describing the interaction between the two groups. This

term is assumed nOt. to Ipflugnce the nature of dyn'amlcs' of FIG. 1. NNS distributions of the energy levels of a Hamiltonian
each part of the Hamiltonian in the class under con5|derat|or}1aving two terms, one with a spectrum having a Wigner spacing
and can thl_JS be negle_cted as far as one is |nte_rested only distribution, and one having a Poissonian spectrum, for different
the fluctuation properties of the spectra. The eigenvalues Qfyjyes of the level-density ratios of the partial spectra. The smooth
H are then expressed by curves show the Poisson distribution.

nro}

_ [Cchaotic regular L. . . .
Eap=Eo"  +EZ™, (4) Renormalizing the resulting spectrum by multiplying each

NNS by the value ofp at the midvalue of energies of the

. ... heighboring levels, we obtain the required NNS distribution
Hreguiar, respectively. We now assume that the NNS distri-q¢ ojqenyalyes of the Hamiltonia. The results of calcula-
bution of the eigenvalueE;™**is given by a Wigner dis- i, are shown in Fig. 1 for four values pf/py,=0.1, 0.3
tribution (1) with level densitypy,(=1), while that of the 7 304 3 where the distributions involve 359, 890, 2170, and
eigenvaluesEjs®"™ is a Poisson distribution with level den- 3268 spacings, respectively. We see from the figure that the
Sity pp. We obtain an eigenvalue spectrum for each ofghtained NNS distributions are all very close to a Poisson
H chaotic @Nd H reguiar DY Starting from an eigenvalue zero and dgjstripution.

successively adding spacings generated as random numberswe repeated the same procedure for the case when the
haV'UQa respgctlvely, a Wigner or Poisson prolbab'|'ty7?e”3'tYregular part of the Hamiltonian describes a harmonic oscil-
function, until we reach an energy of G units of py,”). lator of frequencyw with energy levels giverto within an
Then we compose a spectrum for the total Hamiltortiaby  additive constant depending on the number of regular de-
adding the eigenvalues of the partial Hamiltonians accordingrees of freedomby

to Eqg.(4) and rearranging the resulting values|f;<60 in

an increasing order. The energy spectrum obtained in this ElfMe—7 4B, B=0,12, ... (7)

way will not be uniform. Indeed, the number of eigenvalues p
with energy less tha& will then approximately be given by

whereES*"and Eff9*"are the eigenvalues ¢ gpagicand

and level spacingo=1/hw. The resulting NNS distribu-
E E tions for level-density ratiopy/pyw=0.1, 0.3, 1, and 3 are
N(E)=J dElj d E,NChaotiq )Nl E ) shown in Fig. 2. Again we find that the resulting distribu-
0 0 tions are nearly Poissonians.
The result of the comparisons shown in Figs. 1 and 2 can

X O(E-E1—Ey) be easily understood if we note that the levels of the Hamil-
= pwppE?/2. (5)  tonian under consideratigim which the regular and chaotic
coordinates are separaplare in fact a combination of a
The corresponding level density is large number £60pp or 60/ w) of independent sequences
of GOE spectra, each sequence corresponding to a fixed
_ dN(E) value of E®9U%" which is expected1] to have a Poissonian

P="gE ~PwreE. ©® NN distribution. This point will be discussed in more detail
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FIG. 2. NNS distributions of the energy levels of a Hamiltonian
having two terms, one with a spectrum having a Wigner spacing
distribution, and one representing a harmonic oscillator, for differ- 0.0
ent values of the level-density ratios of the partial spectra. The ~o 1 2 3 4
smooth curves show the Poisson distribution. S

in Sec. lll by considering the case when the regular part of FIG. 3. NNS distributions of energy levels of a Hamiltonian
the Hamiltonian is a harmonic oscillator with limited number having two terms, one with a spectrum having a Wigner spacing
of eigenvalues. distribution, and one representing a harmonic oscillator having at
mostN phonons, for level-density ratios of the partial spegiga
pw=0.1. The smooth curves show the NNS distributions for a ran-
dom superposition ofN independent GOE spectra. The dotted

We shall now consider the case when the regular part ofurves are the distributions calculated using the assumption that the
the Hamiltonian(3) has a finite number of eigenvalues. In level-repulsion function is given b{20) as an average of the cor-
particular we take this part of the Hamiltonian as that of arésponding functions for the Poisson and Wigner distributions.
harmonic oscillator with energy levels

IIl. SUPERPOSITION OF SEQUENCES OF GOE SPECTRA

the interaction between single-particle and collective degrees
E%e—% B8, £=0,1,2,... N. (g)  of freedom, we can write the nuclear Hamiltonian in the
p form given by Eq.(3). Soloviev has recently showa7] that

The results to be obtained here will approach the calculatiof€ role of this interaction increases with increasing excita-
presented in Sec. Il when we take the limit of largetion energy, and thus the number of oscillator quanta
N(~60/4w). We note that allowing only small values of (_phonon$. Thus the clear separation of intrinsic and collec-
N is not very unrealistic. In nuclear physics, for example,tive degrees of freedom which leads to a Hamiltonian of
many successful models are based on representing ti@m (3) is possible only when the numbet of oscillator
nuclear Hamiltonian as a sum of intrinsimteracting par- quanta is small. _ o
ticles or quasiparticlésand collective terms as well as aterm  Figures 3—6 show the histograms of the NNS distribu-
standing for the interaction between single-particle and coltions for the levels of the Hamiltonia8) calculated accord-
lective degrees of freedorfil4]. Shell model calculations iNg to the procedure described in Sec. I, when the spacings
show that the residual nucleon-nucleon interaction makes th@f ES'*°" have a Wigner distribution, while the values of
single-particle motion chaotifL5]. On the other hand, the Ej9*"are given by(8) with N=2, 3, 4, and 5. We shall now
collective part of the Hamiltonian often has a simple inte-show that, as far asw is larger than the mean level spacing
grable form. In particular, when the collective motion is of the chaotic Hamiltonian, the resulting NNS distributions
mainly vibrational, it is usually modeled by a harmonic os-for the levels of the total Hamiltonian can be represented as
cillator. The coexistence of regular collective nuclear dynam-a superposition oin (=N+1) independent sequences of
ics with the intrinsic chaoticity has indeed been illustrated inGOE spectra.

many recent investigation®.g.,[16]). Thus, if we neglect Berry and RobniK4] and Mehta[1] calculated the NNS
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FIG. 5. NNS distributions of energy levels of a Hamiltonian
FIG. 4. NNS distributions of energy levels of a Hamiltonian having two terms, one with a spectrum having a Wigner spacing
having two terms, one with a spectrum having a Wigner spacingjistribution, and one representing a harmonic oscillator having at
distribution, and one representing a harmonic oscillator having afost N phonons, for level-density ratios of the partial spectra
most N phonons, for level-density ratios of the partial spectra,,/p,,=1. The smooth curves show that NNS distributions for a
po!/pw=0.3. The smooth curves show the NNS distributions for arandom superposition dfl independent GOE spectra. The dotted
random superposition dfl independent GOE spectra. The dotted curves are the distributions calculated using the assumption that the
curves are the distributions calculated using the assumption that thevel-repulsion function is given bg20) as an average of the cor-

level-repulsion function is given b{20) as an average of the cor- responding functions for the Poisson and Wigner distributions.
responding functions for the Poisson and Wigner distributions.

distribution of a mixed sequence, resulting from a random E(s)zH Ei(f;s). (11
superposition of uncorrelated sequences of energy levels. :

According to these authors, if the level density of iltle o _ )
sequence ip; , and if the NNS distribution of levels of this 1n€ NNS distribution of the mixed system can be obtained
sequence i®;(x,) wherex, = f;s andf,=p, /Sp;, the cumu- PV differentiating(11) twice, which yields

lative spacing distribution is

Pi(f;s) 1-W(f;s)]?
N P(s)=E(s) [2 Eds T2 " Eds
Wi(xi):f Pi(x)dx, 9
0 1-W,(f,9)]?
—Z { "TE.(fs) } (12

and the probability that, in a given interval of length,

there is no level belonging to thiéh sequence is If all the n individual sequences have the same level densi-

ties, so thaf;=1/n, and if the NNS distribution of the levels
E.(x)= fo_c[l—Wi(x)]dx. (10) of each is a Wigner distribution, thgi2) becomes

1 s\/—
Then the probability that a given interval of lengtldoes not PO=7 erfc( ) } Q(S) (=1)Q(s)|,
contain any of the levels of the mixed sequence is given by (13
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the chaotic term of the Hamiltonian. In the latter cases, many
of the nearest neighbors have the same valueES°",
thus contributing to the NNS distributions with nearly equal
. spacings.

IV. AVERAGING THE LEVEL-REPULSION FUNCTION

Recently[12], a method was suggested to evaluate the
NNS distributions of levels of systems with mixed regular
05 1 and chaotic dynamics. The starting point of this method is
the well-known expression of the NNS distributi®{s) in
terms of the level-repulsion functiar(s):

N=3

: (15
0

P(s)=r(s)exr{—JSr(x)dx

P(s)
o
U

[ ]

which has been derived using simple probability arguments
[15]. The level-repulsion function is defined so thés$)ds s

the conditional probability that, given a level at enefgy
there is one level in the intervdis provided that there are no

u levels in the interval E,E+s). The Poisson distributiof®)

can be obtained froril5) by taking

poissohS) =1, (16)
which is consistent with the fact that, in the regular regime,
05 . the conditional probability density of finding a level in a
given spacing interval does not depend on the length of this
. ] > interval. On the other hand, the Wigner formylg for the
00 1 2 3 2 NNS distribution of levels with GOE statistics is obtained by
S the following choice of the level-repulsion function:
FIG. 6. NNS distributions of energy levels of a Hamiltonian I wigned S) = 3 s, (17

having two terms, one with a spectrum having a Wigner distribu-

tion, and one representing a harmonic oscillator having at iHost where the constant factor ensures a unit average level spac-
phonons, for level-density ratios of the partial spegigdp,y=3. ing. Mixed systems have NNS distributions intermediate be-
The smooth curves show the NNS distributions for a random supertween the Poisson and Wigner distributions. The celebrated
position of N independent GOE spectra. The dotted curves are th@rody’'s formula for the level spacing of mixed systems is
distributions calculated using the assumption that the levelobtained by assuming a fractional power dependence of the
repulsion function is given by20) as an average of the correspond- level-repulsion function3], r(s)=s?, which smoothly inter-

ing functions for the Poisson and Wigner distributions. polates between the Poissgi=0) and Wigner g=1) dis-

_ tributions through the parameteg® which, unfortunately,
where Q(s)=e~ """ /erfc(s\m/2n) and erfck) is the  cannot be explicitly related to the dynamics of the system. In
complementary error function. It is interesting to note that,Ref.[12], it has been assumed that the level-repulsion func-
according to(13), tion for the mixed system can be obtained by averaging the

corresponding functions for the regular and chaotic regimes
P(0)=1— E (14) With weigh_ts given_ by the fractional phase-space volumes of
n their classical motion:

does not vanish except in the casercf 1. It slowly ap- F mixed S) = 0T poissohS) + (1= ) wigne(S), (18)

proaches unity as tends to infinity, showing the gradual

transition of the NNS distribution of the mixed sequencewhereq is the fractional volume of the regular domain of the

toward the Poisson distribution as the number of its consti€lassical phase space. Equatid8) is obtained by applying

tuting sequences increases. Berry’s parameter-space methidd], in which the NNS dis-
We have used13) to calculate the NNS distributions of tribution and thus the level-repulsion functiogs) are ob-

levels of n=N+1 independent sequences of GOE spectratained as an ensemble average o éunction, to the case

The results of calculation are shown as smooth curves imhen the Hamiltonian ensemble is divided into two suben-

Figs. 3—6 and compared with the corresponding NNS distrisembles, one for the regular motion and one for the chaotic.

butions of the Hamiltoniaf3) obtained above for the case in Substituting(18) into (15) yields

which Efgeg“'a’ is given by (8). The agreement between the

curves and histograms is very good, except in the cases in Pmiwed S)=[q+ 3 m(1—q)s]exd —qs— T m(1—q)s?].

which# o is smaller than the mean spacing of eigenvalues of (19
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This formula was tested ifil2] by an analysis of the NNS tem under consideration is written as a sum of two terms,
distributions of energy levels of a hydrogen atom in a uni-describing the intrinsic and collective motion, respectively.
form magnetic field8]. The extracted values of the param- Often, the intrinsic degrees of freedom have classically cha-
eterq for all strengths of the magnetic field considered8h  otic dynamics whereas the collective degrees of freedom are
were found consistent with the corresponding values obassumed to be regular. In this case the system is described by
tained in the classical-mechanical analysis. Equatib® 5 Hamiltonian of the form(3). We constructed a possible
was also used ipl9] to provide a reasonable description of eigenvalue spectrum for the chaotic part of such a Hamil-
the level spacing distribution of low-lying excited states of aynian by sequentially increasing the eigenvalues by random
large n_umber_ of atomic nuclei, and to obtain a rapid eStimat%pacings generated by a Wigner distribution. The eigenval-
for their fractional phase-space volumes. ues of the regular term are obtained by generating random

i The putrpé).f,e gf th'ﬁlsfeCtt'ﬁn IS to m:;]lke l:r?e of thle calc?la— pacings according to a Poisson distribution. The case when
lon reported In Sec. 117 Tor the case when the regufar par Odfhe regular part of the Hamiltonian is modeled by a harmonic
the Hamiltonian is modeled as a harmonic oscillator allowe

. - ... . ~oscillator was also considered. As far as a sufficient number
to have onlyn eigenvalues, to provide a further justification

of the averaging of the level-repulsion function introduced.Of eigenvalues of each term of the Hamiltonian are involved

by Eq.(18). To do this, let us consider a given label of the in cqnstrqcting.the .spectrum, the resulting spacing distribu-
Hamiltonian(3) with energy, sayE,,; given by Eq.(4). The ~ 1On IS PoissoniariFigs. 1 and 2

next level will either belong to the same eigenstate of energy. We then considered the case when the regular part of the
Bhw of the partial HamiltonianH eqys OF to one of the amiltonian is that of a harmonic oscillator with eigenvalues

n—1 eigenstates with different eigenvalugd#w. The restricted to a finite number of oscillator quanta. We show
former case will occur with a probability of a/and, in this  that the NNS distribution of levels of the total Hamiltonian
case, the distance to the second level will be drawn from &2an be reproduced by assuming that the spectrum can be
Wigner distribution. The latter case will have a probability of represented as a random superposition of sequences of inde-
1—1/n, and the probability density of the correspondingpendent spectra, each described by a GOE. The spacing dis-
level spacing will be given by the Poisson law because théributions fall between the Wigner and Poisson distributions,
eigenvalues of both parts of the Hamiltonian are uncorreand become closer to the latter as the involved number of
lated. Therefore, an approximate description of the NNS dislevels of the regular Hamiltonian increasgsgs. 3-5. An
tribution may be obtained by assuming that the probabilityexception is the case when the regular term of the Hamil-
density that the next level occurs at a distande given by  tonian models a harmonic oscillator with an eigenvalue mean
spacing smaller than that of the chaotic Hamilton(giy. 6).
r(8)=(1=1/M)rpoissohS) T (1N)Twigne(S)- (200 |5 this case, when the spectrum involves a small number of

Comparing(18) and (20), we see that this method of aver- oscillator eigenvalues, the NNS distribution of the total spec-
aging the Ievel—repulsio,n function will lead to a NNS distri- trum resembles that of a multidimensional oscillator of in-

bution given by Eq(19), with the parameteq given by commensurable frequencig®]. As the number of involved
oscillator quanta increases, we again observe a transition of
g=1-1/n. (21)  the NNS distribution to the Poissonian shape.

) , o Finally, we examined the validity of the representation of
We first note that the resulting distribution has the correclyq |eyei-repulsion function as an average of the correspond-
;/r?lue(14)t 3t St:'bo .t_Welgo¥v comp.a:e thlsfdls_tr(ljbutlondwnth ing functions for the Wigner and Poisson distributidis.

e exact distributior(13) for a mixture ofn independen .(18)], which was recently suggested as a basis for obtaining

GOE spectra. The result of the comparison are shown i o : i
Figs. 3—6 side by side with the histograms representing thEz e NNS distribution for mixed systenjd2]. We used this

results of the numerical calculations of Sec. Ill. As the ﬁg_a_ssumptlon n Eq(2_0) t.o cglculate_an approximate expres-
ures show, the agreement between the exact and approximefc'('é?r,1 for the NNS distribution of _elgenvalues of the. Ham|.l-
expressions is reasonable, at least within the accuracy réonian(3) when the regular part is that of a harmonic oscil-
quired for the analysis of the histograms that are convention@0r with a limited number of eigenvalues whose exact

ally used to describe the level-spacing distributions. expression is given by Eq13). Figures 3—6 show that the
exact and approximate distributions agree reasonably well,

which may be considered a justification for the application of
Eqg. (19 to the analysis of the NNS distributions of mixed

In several models successfully applied in molecular,systems, at least in cases when the Hamiltonian can be ap-
nuclear, and solid-state physics, the Hamiltonian of the sysproximated in the form given by E@3).
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