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We consider a quantum system with a Hamiltonian expressed as a sum of two terms. The first is chaotic, and
considered a member of a Gaussian orthogonal ensemble~GOE! of random matrices. The second is integrable,
having either equally spaced levels or levels with spacings satisfying a Poisson distribution. The resulting
nearest-neighbor-spacing~NNS! distribution of the energy levels of the system is nearly Poissonian in both
cases when the analysis involves a large number of levels. If a limited number of levels is considered in each
case, deviations from the Poisson distribution are observed. When the regular part of the Hamiltonian is an
oscillator with a limited number of phonons, the resulting NNS distribution can be considered as a superpo-
sition of independent sequences of levels with GOE statistics when the oscillator energy quantum is larger than
the mean spacing of the other term of the Hamiltonian. This distribution has a shape intermediate between the
Wigner and the Poisson, and gradually approaches the latter when the number of phonons is increased. This
transitional behavior is well reproduced by averaging the level-repulsion function, which may be considered as
a justification for a method, recently suggested to calculate the NNS distributions for systems with mixed
classical dynamics.@S1063-651X~96!12409-0#

PACS number~s!: 05.45.1b

I. INTRODUCTION

Random matrix theories have been successfully used to
describe a wide variety of chaotic systems@1#. For a bound
quantal system with time-reversal symmetry~or, equiva-
lently, antiunitary symmetry!, energy levels are determined
by diagonalizing a Hamiltonian matrix which is real and
symmetric. When the classical counterpart of such a system
is chaotic, the Hamiltonian matrix can be regarded as a typi-
cal member of the Gaussian orthogonal ensemble~GOE! of
random real symmetric matrices for which all the matrix el-
ements~diagonal and off-diagonal! have the same Gaussian
distribution. The exact expression for the nearest-neighbor-
spacing~NNS! distribution of levels of the GOE is quite
cumbersome. This distribution can, however, be closely ap-
proximated by a simple function, known as the Wigner dis-
tribution,

PWigner~s!5~ps/2!exp~2ps2/4!. ~1!

When the classical counterpart of the system is regular, the
NNS distribution is, in general, well represented by a Pois-
son distribution:

PPoisson~s!5exp~2s!. ~2!

Among the exceptional cases is the multidimensional har-
monic oscillator of incommensurate frequencies, where the
NNS distribution is sharply peaked at a finite spacing whose
value depends on the frequency ratios@2#. The intermediate
regime between regularity and chaos is still the subject of
many recent investigations. Various formulas have been pro-

posed to analyze the NNS distribution of levels of mixed
systems@3–12#. They depend on one parameter~or more!,
which can be tuned to interpolate between the Wigner and
Poisson distributions. These formulas give different descrip-
tions for the level statistics of mixed system, each providing
a suitable description of at least one numerical experiment
with a model Hamiltonian. The conclusion that follows from
these studies is that, while the level statistics of chaotic and
regular bound quantal systems~with the exception of har-
monic oscillators! have universal behavior, mixed systems
unfortunately do not follow the same rules. Nothing is
strange about this. Studies of various classical mixed systems
have shown that the transition from regularity to chaos oc-
curs in one of several routes, e.g., a sequence of bifurcations,
period doubling, or intermittent transitions@13#.

In this paper we consider a special class of mixed sys-
tems, in which the degrees of freedom can be divided into
two noninteracting groups, one having chaotic dynamics and
one regular. The Hamiltonian of such a system is given as a
sum of two terms, so that each of the eigenvalues of the total
Hamiltonian is expressed as a superposition of two eigenval-
ues corresponding to the two Hamiltonian terms. Hamilto-
nians of this form have been successfully used in several
models of molecular, nuclear, and solid-state physics. In Sec.
II, we generate an energy spectrum corresponding to each of
the two terms by treating the level spacing as random num-
bers having Wigner or Poisson probability densities. We also
consider the case when the regular part of the Hamiltonian is
modeled as a harmonic oscillator. We calculate the spacing
distributions of the levels of the total Hamiltonian for differ-
ent values of the ratio of level densities of the partial Hamil-
tonians. The resulting NNS distributions are nearly of a Pois-
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sonian shape as far as a large number of levels belonging to
each Hamiltonian term are involved. Section III considers
the case when the harmonic oscillator is allowed to have a
limited number of eigenvalues, and we find that the NNS
distribution is approximately well described as that of a mix-
ture of GOE spectra. Section IV applies the recently sug-
gested representation of the level-repulsion function for a
mixed system as an average of the corresponding functions
for the Poisson and Wigner distributions@12# to derive the
NNS of a superposition of GOE spectra, and compares the
resulting expression with the distributions obtained in Sec.
III. The results of the present paper are summarized in Sec.
V.

II. NNS DISTRIBUTION OF LEVELS
OF THE MIXED SYSTEM

We consider a system of many degrees of freedom, some
of them chaotic and some regular. The Hamiltonian of the
system can be decomposed into two terms,

H5Hchaotic1H regular, ~3!

each corresponding to one of the two groups of degrees of
freedom. In the general case, the Hamiltonian has a third
term describing the interaction between the two groups. This
term is assumed not to influence the nature of dynamics of
each part of the Hamiltonian in the class under consideration,
and can thus be neglected as far as one is interested only in
the fluctuation properties of the spectra. The eigenvalues of
H are then expressed by

Eab5Ea
chaotic1Eb

regular, ~4!

whereEa
chaotic andEb

regular are the eigenvalues ofHchaotic and
H regular, respectively. We now assume that the NNS distri-
bution of the eigenvaluesEa

chaotic is given by a Wigner dis-
tribution ~1! with level densityrW(51), while that of the
eigenvaluesEb

regular is a Poisson distribution with level den-
sity rP . We obtain an eigenvalue spectrum for each of
Hchaotic andH regular by starting from an eigenvalue zero and
successively adding spacings generated as random numbers
having, respectively, a Wigner or Poisson probability density
function, until we reach an energy of 60~in units of rW

21).
Then we compose a spectrum for the total HamiltonianH by
adding the eigenvalues of the partial Hamiltonians according
to Eq.~4! and rearranging the resulting values ofEab<60 in
an increasing order. The energy spectrum obtained in this
way will not be uniform. Indeed, the number of eigenvalues
with energy less thanE will then approximately be given by

N~E!5E
0

E

dE1E
0

E

dE2N
chaotic~E1!N

regular~E2!

3d~E2E12E2!

5rWrPE
2/2. ~5!

The corresponding level density is

r5
dN~E!

dE
5rWrPE. ~6!

Renormalizing the resulting spectrum by multiplying each
NNS by the value ofr at the midvalue of energies of the
neighboring levels, we obtain the required NNS distribution
of eigenvalues of the HamiltonianH. The results of calcula-
tion are shown in Fig. 1 for four values ofrP /rW50.1, 0.3,
1, and 3, where the distributions involve 359, 890, 2170, and
3268 spacings, respectively. We see from the figure that the
obtained NNS distributions are all very close to a Poisson
distribution.

We repeated the same procedure for the case when the
regular part of the Hamiltonian describes a harmonic oscil-
lator of frequencyv with energy levels given~to within an
additive constant depending on the number of regular de-
grees of freedom! by

Eb
regular5\vb, b50,1,2, . . . ~7!

and level spacingr051/\v. The resulting NNS distribu-
tions for level-density ratiosr0 /rW50.1, 0.3, 1, and 3 are
shown in Fig. 2. Again we find that the resulting distribu-
tions are nearly Poissonians.

The result of the comparisons shown in Figs. 1 and 2 can
be easily understood if we note that the levels of the Hamil-
tonian under consideration~in which the regular and chaotic
coordinates are separable! are in fact a combination of a
large number ('60rP or 60/\v) of independent sequences
of GOE spectra, each sequence corresponding to a fixed
value ofEb

regular which is expected@1# to have a Poissonian
NNS distribution. This point will be discussed in more detail

FIG. 1. NNS distributions of the energy levels of a Hamiltonian
having two terms, one with a spectrum having a Wigner spacing
distribution, and one having a Poissonian spectrum, for different
values of the level-density ratios of the partial spectra. The smooth
curves show the Poisson distribution.
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in Sec. III by considering the case when the regular part of
the Hamiltonian is a harmonic oscillator with limited number
of eigenvalues.

III. SUPERPOSITION OF SEQUENCES OF GOE SPECTRA

We shall now consider the case when the regular part of
the Hamiltonian~3! has a finite number of eigenvalues. In
particular we take this part of the Hamiltonian as that of a
harmonic oscillator with energy levels

Eb
regular5\vb, b50,1,2,. . . ,N. ~8!

The results to be obtained here will approach the calculation
presented in Sec. II when we take the limit of large
N('60/\v). We note that allowing only small values of
N is not very unrealistic. In nuclear physics, for example,
many successful models are based on representing the
nuclear Hamiltonian as a sum of intrinsic~interacting par-
ticles or quasiparticles! and collective terms as well as a term
standing for the interaction between single-particle and col-
lective degrees of freedom@14#. Shell model calculations
show that the residual nucleon-nucleon interaction makes the
single-particle motion chaotic@15#. On the other hand, the
collective part of the Hamiltonian often has a simple inte-
grable form. In particular, when the collective motion is
mainly vibrational, it is usually modeled by a harmonic os-
cillator. The coexistence of regular collective nuclear dynam-
ics with the intrinsic chaoticity has indeed been illustrated in
many recent investigations~e.g., @16#!. Thus, if we neglect

the interaction between single-particle and collective degrees
of freedom, we can write the nuclear Hamiltonian in the
form given by Eq.~3!. Soloviev has recently shown@17# that
the role of this interaction increases with increasing excita-
tion energy, and thus the number of oscillator quanta
~phonons!. Thus the clear separation of intrinsic and collec-
tive degrees of freedom which leads to a Hamiltonian of
form ~3! is possible only when the numberN of oscillator
quanta is small.

Figures 3–6 show the histograms of the NNS distribu-
tions for the levels of the Hamiltonian~3! calculated accord-
ing to the procedure described in Sec. II, when the spacings
of Ea

chaotic have a Wigner distribution, while the values of
Eb
regularare given by~8! with N52, 3, 4, and 5. We shall now

show that, as far as\v is larger than the mean level spacing
of the chaotic Hamiltonian, the resulting NNS distributions
for the levels of the total Hamiltonian can be represented as
a superposition ofn (5N11) independent sequences of
GOE spectra.

Berry and Robnik@4# and Mehta@1# calculated the NNS

FIG. 2. NNS distributions of the energy levels of a Hamiltonian
having two terms, one with a spectrum having a Wigner spacing
distribution, and one representing a harmonic oscillator, for differ-
ent values of the level-density ratios of the partial spectra. The
smooth curves show the Poisson distribution.

FIG. 3. NNS distributions of energy levels of a Hamiltonian
having two terms, one with a spectrum having a Wigner spacing
distribution, and one representing a harmonic oscillator having at
mostN phonons, for level-density ratios of the partial spectrar0/
rW50.1. The smooth curves show the NNS distributions for a ran-
dom superposition ofN independent GOE spectra. The dotted
curves are the distributions calculated using the assumption that the
level-repulsion function is given by~20! as an average of the cor-
responding functions for the Poisson and Wigner distributions.
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distribution of a mixed sequence, resulting from a random
superposition ofn uncorrelated sequences of energy levels.
According to these authors, if the level density of thei th
sequence isr i , and if the NNS distribution of levels of this
sequence isPi(xI) wherexi5 f is and f i5r i /(r i , the cumu-
lative spacing distribution is

Wi~xi !5E
0

xi
Pi~x!dx, ~9!

and the probability that, in a given interval of lengthxi ,
there is no level belonging to thei th sequence is

Ei~xi !5E
xi

`

@12Wi~x!#dx. ~10!

Then the probability that a given interval of lengths does not
contain any of the levels of the mixed sequence is given by

E~s!5)
i
Ei~ f is!. ~11!

The NNS distribution of the mixed system can be obtained
by differentiating~11! twice, which yields

P~s!5E~s!H(
i
f i
2Pi~ f is!

Ei~ f is!
1F(

i
f i
12Wi~ f is!

Ei~ f is! G2
2(

i
F f i 12Wi~ f is!

Ei~ f is! G2J . ~12!

If all the n individual sequences have the same level densi-
ties, so thatf i51/n, and if the NNS distribution of the levels
of each is a Wigner distribution, then~12! becomes

P~s!5
1

n FerfcS sAp

2N D GnQ~s!Fps

2n
1~n21!Q~s!G ,

~13!

FIG. 4. NNS distributions of energy levels of a Hamiltonian
having two terms, one with a spectrum having a Wigner spacing
distribution, and one representing a harmonic oscillator having at
most N phonons, for level-density ratios of the partial spectra
r0 /rW50.3. The smooth curves show the NNS distributions for a
random superposition ofN independent GOE spectra. The dotted
curves are the distributions calculated using the assumption that the
level-repulsion function is given by~20! as an average of the cor-
responding functions for the Poisson and Wigner distributions.

FIG. 5. NNS distributions of energy levels of a Hamiltonian
having two terms, one with a spectrum having a Wigner spacing
distribution, and one representing a harmonic oscillator having at
most N phonons, for level-density ratios of the partial spectra
r0 /rW51. The smooth curves show that NNS distributions for a
random superposition ofN independent GOE spectra. The dotted
curves are the distributions calculated using the assumption that the
level-repulsion function is given by~20! as an average of the cor-
responding functions for the Poisson and Wigner distributions.
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where Q(s)5e2ps2/4n2/erfc(sAp/2n) and erfc(x) is the
complementary error function. It is interesting to note that,
according to~13!,

P~0!512
1

n
~14!

does not vanish except in the case ofn51. It slowly ap-
proaches unity asn tends to infinity, showing the gradual
transition of the NNS distribution of the mixed sequence
toward the Poisson distribution as the number of its consti-
tuting sequences increases.

We have used~13! to calculate the NNS distributions of
levels of n5N11 independent sequences of GOE spectra.
The results of calculation are shown as smooth curves in
Figs. 3–6 and compared with the corresponding NNS distri-
butions of the Hamiltonian~3! obtained above for the case in
which Eb

regular is given by ~8!. The agreement between the
curves and histograms is very good, except in the cases in
which\v is smaller than the mean spacing of eigenvalues of

the chaotic term of the Hamiltonian. In the latter cases, many
of the nearest neighbors have the same values ofEa

chaotic,
thus contributing to the NNS distributions with nearly equal
spacings.

IV. AVERAGING THE LEVEL-REPULSION FUNCTION

Recently @12#, a method was suggested to evaluate the
NNS distributions of levels of systems with mixed regular
and chaotic dynamics. The starting point of this method is
the well-known expression of the NNS distributionP(s) in
terms of the level-repulsion functionr (s):

P~s!5r ~s!expF2E
0

s

r ~x!dxG , ~15!

which has been derived using simple probability arguments
@15#. The level-repulsion function is defined so thatr (s)ds is
the conditional probability that, given a level at energyE,
there is one level in the intervalds provided that there are no
levels in the interval (E,E1s). The Poisson distribution~2!
can be obtained from~15! by taking

rPoisson~s!51, ~16!

which is consistent with the fact that, in the regular regime,
the conditional probability density of finding a level in a
given spacing interval does not depend on the length of this
interval. On the other hand, the Wigner formula~1! for the
NNS distribution of levels with GOE statistics is obtained by
the following choice of the level-repulsion function:

rWigner~s!5 1
2 ps, ~17!

where the constant factor ensures a unit average level spac-
ing. Mixed systems have NNS distributions intermediate be-
tween the Poisson and Wigner distributions. The celebrated
Brody’s formula for the level spacing of mixed systems is
obtained by assuming a fractional power dependence of the
level-repulsion function@3#, r (s)}sb, which smoothly inter-
polates between the Poisson (b50) and Wigner (b51) dis-
tributions through the parameterb which, unfortunately,
cannot be explicitly related to the dynamics of the system. In
Ref. @12#, it has been assumed that the level-repulsion func-
tion for the mixed system can be obtained by averaging the
corresponding functions for the regular and chaotic regimes
with weights given by the fractional phase-space volumes of
their classical motion:

rmixed~s!5qrPoisson~s!1~12q!rWigner~s!, ~18!

whereq is the fractional volume of the regular domain of the
classical phase space. Equation~18! is obtained by applying
Berry’s parameter-space method@18#, in which the NNS dis-
tribution and thus the level-repulsion functionr (s) are ob-
tained as an ensemble average of ad function, to the case
when the Hamiltonian ensemble is divided into two suben-
sembles, one for the regular motion and one for the chaotic.
Substituting~18! into ~15! yields

Pmixed~s!5@q1 1
2 p~12q!s#exp@2qs2 1

4 p~12q!s2#.
~19!

FIG. 6. NNS distributions of energy levels of a Hamiltonian
having two terms, one with a spectrum having a Wigner distribu-
tion, and one representing a harmonic oscillator having at mostN
phonons, for level-density ratios of the partial spectrar0 /rW53.
The smooth curves show the NNS distributions for a random super-
position ofN independent GOE spectra. The dotted curves are the
distributions calculated using the assumption that the level-
repulsion function is given by~20! as an average of the correspond-
ing functions for the Poisson and Wigner distributions.
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This formula was tested in@12# by an analysis of the NNS
distributions of energy levels of a hydrogen atom in a uni-
form magnetic field@8#. The extracted values of the param-
eterq for all strengths of the magnetic field considered in@8#
were found consistent with the corresponding values ob-
tained in the classical-mechanical analysis. Equation~19!
was also used in@19# to provide a reasonable description of
the level spacing distribution of low-lying excited states of a
large number of atomic nuclei, and to obtain a rapid estimate
for their fractional phase-space volumes.

The purpose of this section is to make use of the calcula-
tion reported in Sec. III for the case when the regular part of
the Hamiltonian is modeled as a harmonic oscillator allowed
to have onlyn eigenvalues, to provide a further justification
of the averaging of the level-repulsion function introduced
by Eq. ~18!. To do this, let us consider a given label of the
Hamiltonian~3! with energy, say,Eab given by Eq.~4!. The
next level will either belong to the same eigenstate of energy
b\v of the partial HamiltonianH regular or to one of the
n21 eigenstates with different eigenvaluesb8\v. The
former case will occur with a probability of 1/n and, in this
case, the distance to the second level will be drawn from a
Wigner distribution. The latter case will have a probability of
121/n, and the probability density of the corresponding
level spacing will be given by the Poisson law because the
eigenvalues of both parts of the Hamiltonian are uncorre-
lated. Therefore, an approximate description of the NNS dis-
tribution may be obtained by assuming that the probability
density that the next level occurs at a distances is given by

r ~s!5~121/n!rPoisson~s!1~1/n!rWigner~s!. ~20!

Comparing~18! and ~20!, we see that this method of aver-
aging the level-repulsion function will lead to a NNS distri-
bution given by Eq.~19!, with the parameterq given by

q5121/n. ~21!

We first note that the resulting distribution has the correct
value ~14! at s50. We now compare this distribution with
the exact distribution~13! for a mixture ofn independent
GOE spectra. The result of the comparison are shown in
Figs. 3–6 side by side with the histograms representing the
results of the numerical calculations of Sec. III. As the fig-
ures show, the agreement between the exact and approximate
expressions is reasonable, at least within the accuracy re-
quired for the analysis of the histograms that are convention-
ally used to describe the level-spacing distributions.

V. SUMMARY AND CONCLUSION

In several models successfully applied in molecular,
nuclear, and solid-state physics, the Hamiltonian of the sys-

tem under consideration is written as a sum of two terms,
describing the intrinsic and collective motion, respectively.
Often, the intrinsic degrees of freedom have classically cha-
otic dynamics whereas the collective degrees of freedom are
assumed to be regular. In this case the system is described by
a Hamiltonian of the form~3!. We constructed a possible
eigenvalue spectrum for the chaotic part of such a Hamil-
tonian by sequentially increasing the eigenvalues by random
spacings generated by a Wigner distribution. The eigenval-
ues of the regular term are obtained by generating random
spacings according to a Poisson distribution. The case when
the regular part of the Hamiltonian is modeled by a harmonic
oscillator was also considered. As far as a sufficient number
of eigenvalues of each term of the Hamiltonian are involved
in constructing the spectrum, the resulting spacing distribu-
tion is Poissonian~Figs. 1 and 2!.

We then considered the case when the regular part of the
Hamiltonian is that of a harmonic oscillator with eigenvalues
restricted to a finite number of oscillator quanta. We show
that the NNS distribution of levels of the total Hamiltonian
can be reproduced by assuming that the spectrum can be
represented as a random superposition of sequences of inde-
pendent spectra, each described by a GOE. The spacing dis-
tributions fall between the Wigner and Poisson distributions,
and become closer to the latter as the involved number of
levels of the regular Hamiltonian increases~Figs. 3–5!. An
exception is the case when the regular term of the Hamil-
tonian models a harmonic oscillator with an eigenvalue mean
spacing smaller than that of the chaotic Hamiltonian~Fig. 6!.
In this case, when the spectrum involves a small number of
oscillator eigenvalues, the NNS distribution of the total spec-
trum resembles that of a multidimensional oscillator of in-
commensurable frequencies@2#. As the number of involved
oscillator quanta increases, we again observe a transition of
the NNS distribution to the Poissonian shape.

Finally, we examined the validity of the representation of
the level-repulsion function as an average of the correspond-
ing functions for the Wigner and Poisson distributions@Eq.
~18!#, which was recently suggested as a basis for obtaining
the NNS distribution for mixed systems@12#. We used this
assumption in Eq.~20! to calculate an approximate expres-
sion for the NNS distribution of eigenvalues of the Hamil-
tonian ~3! when the regular part is that of a harmonic oscil-
lator with a limited number of eigenvalues whose exact
expression is given by Eq.~13!. Figures 3–6 show that the
exact and approximate distributions agree reasonably well,
which may be considered a justification for the application of
Eq. ~19! to the analysis of the NNS distributions of mixed
systems, at least in cases when the Hamiltonian can be ap-
proximated in the form given by Eq.~3!.
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